\(\int \frac {A+C \cos ^2(c+d x)}{(b \cos (c+d x))^{7/2}} \, dx\) [87]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 115 \[ \int \frac {A+C \cos ^2(c+d x)}{(b \cos (c+d x))^{7/2}} \, dx=-\frac {2 (3 A+5 C) \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b^4 d \sqrt {\cos (c+d x)}}+\frac {2 A \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}+\frac {2 (3 A+5 C) \sin (c+d x)}{5 b^3 d \sqrt {b \cos (c+d x)}} \]

[Out]

2/5*A*sin(d*x+c)/b/d/(b*cos(d*x+c))^(5/2)+2/5*(3*A+5*C)*sin(d*x+c)/b^3/d/(b*cos(d*x+c))^(1/2)-2/5*(3*A+5*C)*(c
os(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*(b*cos(d*x+c))^(1/2)/b^4/d
/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {3091, 2716, 2721, 2719} \[ \int \frac {A+C \cos ^2(c+d x)}{(b \cos (c+d x))^{7/2}} \, dx=-\frac {2 (3 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{5 b^4 d \sqrt {\cos (c+d x)}}+\frac {2 (3 A+5 C) \sin (c+d x)}{5 b^3 d \sqrt {b \cos (c+d x)}}+\frac {2 A \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}} \]

[In]

Int[(A + C*Cos[c + d*x]^2)/(b*Cos[c + d*x])^(7/2),x]

[Out]

(-2*(3*A + 5*C)*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(5*b^4*d*Sqrt[Cos[c + d*x]]) + (2*A*Sin[c + d*
x])/(5*b*d*(b*Cos[c + d*x])^(5/2)) + (2*(3*A + 5*C)*Sin[c + d*x])/(5*b^3*d*Sqrt[b*Cos[c + d*x]])

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 3091

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[A*Cos[e +
 f*x]*((b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Dist[(A*(m + 2) + C*(m + 1))/(b^2*(m + 1)), Int[(b*Sin[e
+ f*x])^(m + 2), x], x] /; FreeQ[{b, e, f, A, C}, x] && LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 A \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}+\frac {(3 A+5 C) \int \frac {1}{(b \cos (c+d x))^{3/2}} \, dx}{5 b^2} \\ & = \frac {2 A \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}+\frac {2 (3 A+5 C) \sin (c+d x)}{5 b^3 d \sqrt {b \cos (c+d x)}}-\frac {(3 A+5 C) \int \sqrt {b \cos (c+d x)} \, dx}{5 b^4} \\ & = \frac {2 A \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}+\frac {2 (3 A+5 C) \sin (c+d x)}{5 b^3 d \sqrt {b \cos (c+d x)}}-\frac {\left ((3 A+5 C) \sqrt {b \cos (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{5 b^4 \sqrt {\cos (c+d x)}} \\ & = -\frac {2 (3 A+5 C) \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b^4 d \sqrt {\cos (c+d x)}}+\frac {2 A \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}+\frac {2 (3 A+5 C) \sin (c+d x)}{5 b^3 d \sqrt {b \cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.70 \[ \int \frac {A+C \cos ^2(c+d x)}{(b \cos (c+d x))^{7/2}} \, dx=\frac {2 \left (-\left ((3 A+5 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )\right )+(3 A+5 C) \sin (c+d x)+A \sec (c+d x) \tan (c+d x)\right )}{5 b^3 d \sqrt {b \cos (c+d x)}} \]

[In]

Integrate[(A + C*Cos[c + d*x]^2)/(b*Cos[c + d*x])^(7/2),x]

[Out]

(2*(-((3*A + 5*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]) + (3*A + 5*C)*Sin[c + d*x] + A*Sec[c + d*x]*Ta
n[c + d*x]))/(5*b^3*d*Sqrt[b*Cos[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(566\) vs. \(2(127)=254\).

Time = 11.80 (sec) , antiderivative size = 567, normalized size of antiderivative = 4.93

method result size
parts \(-\frac {2 A \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (24 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-24 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+12 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}}{5 b^{4} \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \left (8 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}-\frac {2 C \left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{b^{3} \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\) \(567\)
default \(-\frac {2 \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (24 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+40 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) C \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-20 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-24 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+12 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-40 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+20 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-3 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+10 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-5 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}}{5 b^{4} \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \left (8 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\) \(602\)

[In]

int((A+C*cos(d*x+c)^2)/(cos(d*x+c)*b)^(7/2),x,method=_RETURNVERBOSE)

[Out]

-2/5*A*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*b*sin(1/2*d*x+1/2*c)^2)^(1/2)/b^4/sin(1/2*d*x+1/2*c)^3/(8*sin(1/2*d*x+1/2
*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)*(24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-12*(2*sin(
1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c
)^4-24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+12*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2
)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*(sin(
1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*
x+1/2*c)^4*b+b*sin(1/2*d*x+1/2*c)^2)^(1/2)/((2*cos(1/2*d*x+1/2*c)^2-1)*b)^(1/2)/d-2*C/b^3*(-2*cos(1/2*d*x+1/2*
c)*(-2*sin(1/2*d*x+1/2*c)^4*b+b*sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+(sin(1/2*d*x+1/2*c)^2)^(1/2)*
(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4*b+b*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*
x+1/2*c),2^(1/2)))/(-b*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/sin(1/2*d*x+1/2*c)/((2*cos(1/2*d*x
+1/2*c)^2-1)*b)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.21 \[ \int \frac {A+C \cos ^2(c+d x)}{(b \cos (c+d x))^{7/2}} \, dx=\frac {\sqrt {2} {\left (-3 i \, A - 5 i \, C\right )} \sqrt {b} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + \sqrt {2} {\left (3 i \, A + 5 i \, C\right )} \sqrt {b} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left ({\left (3 \, A + 5 \, C\right )} \cos \left (d x + c\right )^{2} + A\right )} \sqrt {b \cos \left (d x + c\right )} \sin \left (d x + c\right )}{5 \, b^{4} d \cos \left (d x + c\right )^{3}} \]

[In]

integrate((A+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

1/5*(sqrt(2)*(-3*I*A - 5*I*C)*sqrt(b)*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x
 + c) + I*sin(d*x + c))) + sqrt(2)*(3*I*A + 5*I*C)*sqrt(b)*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPI
nverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*((3*A + 5*C)*cos(d*x + c)^2 + A)*sqrt(b*cos(d*x + c))*sin(d*
x + c))/(b^4*d*cos(d*x + c)^3)

Sympy [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{(b \cos (c+d x))^{7/2}} \, dx=\text {Timed out} \]

[In]

integrate((A+C*cos(d*x+c)**2)/(b*cos(d*x+c))**(7/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{(b \cos (c+d x))^{7/2}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{\left (b \cos \left (d x + c\right )\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)/(b*cos(d*x + c))^(7/2), x)

Giac [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{(b \cos (c+d x))^{7/2}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{\left (b \cos \left (d x + c\right )\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(7/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)/(b*cos(d*x + c))^(7/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{(b \cos (c+d x))^{7/2}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{{\left (b\,\cos \left (c+d\,x\right )\right )}^{7/2}} \,d x \]

[In]

int((A + C*cos(c + d*x)^2)/(b*cos(c + d*x))^(7/2),x)

[Out]

int((A + C*cos(c + d*x)^2)/(b*cos(c + d*x))^(7/2), x)